

LowpT: Chasing the $\Delta \phi$ excess

Lina Galtieri, Bill Quayle, Simone Pagan Griso

Outline:

Excess: 28 +- 12 events

Looking at shapes of distributions for data and background in the 2011 sample (2011 analysis)

Focusing on a few plots for today

2011 Data and backgrounds

Unstacked distributions of data and backgrounds

e-mu and mu-e channels

•_ Splitting the e-mu in ehi-mlow and mhi-elow showed that all of the excess is in events with a subleading muon.

Studies of the excess

Many checks have been made:

No detector effects have been found No time dependence (B-K and L-M periods agree within stat) Excess is already evident at the Jet Veto level and more....NO SMOKING GUN WAS FOUND

Major backgrounds are the WW background and the W+jets

WW Background:

Agreement between data and predixtion in Control Regions has been checked Alternative CR have been looked at tau polarization has been checked

W+jets:

Remains the prime suspect for the excess.

Lepton Isolation and Impact parameter

- The excess is in the 0.6-1.2 $\Delta\Phi$ region.
- Isolation and d0 significance are plotted in bins of $\Delta\Phi$

- No dependence on the bin of $\Delta\Phi$ is observed for the isolation
- No tail of the d0
 significance is
 observed.
 Heavy flavor not
 major component
 of background.
- Charm can still contribute. D_s too small.

STUDY of the MT CUT

- For the nominal analysis a dependence on the MT has been suggested. In particular a cut at MT > 90 GeV.
- At Jet Veto level, the distributions for the SubL μ or e look somewhat different for the lowpT analysis. Narrower for the mu-e channel in the data, not in the expectation.
- These are 2011 data and are NOT BLINDED

Plot on the right is data only.

MT Dependence of $\Delta\Phi$ Distribution

m Sublead event (left), e SubLead (right) at Jet Veto Level.

The MT < 90 GeV events peak to the right of Dphi=1.0 where the excess occurs in both distributions.
This agrees with the plots on the previous page where we see a small excess only in the e-mu events, at MT>90.

Summary

- Looked at lepton isolation and impact parameter significance of the 2011 low Pt data in bins of $\Delta\phi_{||}$. Found no dependence on $\Delta\phi_{||}$
- Looked at MT dependence of the excess as a function of $\Delta\phi_{II.}$ Found that MT < 90 GeV events do not contribute to the excess in the e-mu channel.

Backup Slides

Backup Slides

Flavor Dependence of Excess

The excess in the 2011 data is mostly in the ehi-mulow channel

Cutflow for different flavors

Lepton channel	ee	μμ	eμ	all	
Cut 11					
signal	2.2 ± 0.2	5.1 ± 0.3	13.3 ± 0.9	20.6 ± 1.3	
Total Back	159 ± 24	271 ± 33	770 ± 114	1201 ± 170	
observed	144	263	828	1235	
Jet Veto					
signal	1.4 ± 0.1	3.3 ± 0.3	8.9 ± 0.8	13.6 ± 1.2	
Total Back.	41 ± 9	80 ± 15	255 ± 63	376 ± 85	
observed	43	81	282	406	
$P_{T,ll} > 45,30 \text{ GeV}$					
signal	0.76 ± 0.08	1.6 ± 0.2	7.5 ± 0.7	9.8 ± 1.9	1
Total Back.	9.7 ± 3.1	15 ± 2	90 ± 10	115 ± 14	<pre>excess</pre>
observed	6	20	117	143	CAUCUU
Final Sample, with $\Delta \Phi < 1.8$					
signal	8.9 ± 0.8	0.7 ± 0.1	1.6 ± 1.1	6.6 ± 0.6	
Total Back.	9.3 ± 3.0	14.2 ± 2.3	73 ± 8	96 ± 11	<pre>excess</pre>
Observed	5	19	100	124	

No excess in ee, excess in both $e\mu$ and $\mu\mu$